
A Scenario-based Requirement Model for Crossover Healthcare Service

Meng Xi∗ , #Ying Li∗ , Yongna Wei∗ , Naibo Wang∗ , Yuyu Yin†,
Zhiling Luo∗ , Shuiguang Deng∗ , Yihua Mao∗ , Jianwei Yin∗

∗Zhejiang University, Hangzhou, China
†Hangzhou Dianzi University, Hangzhou, China

corresponding author
{ximeng, cnliying, weiyongna, wangnaibo, luozhiling, dengsg, maoyihua, zjuyjw}@zju.edu.cn

yinyuyu@hdu.edu.cn

Abstract—As the population ages, eldercare and healthcare
have become major issues in recent years. Crossover healthcare
services, instead of individual ones, have become the main form
of service provision. In this work, a scenario-based requirement
model (SBRM) is proposed for crossover healthcare service. A
DSL and a prototype system are designed based on the model as
well. Our model defines the requirements as: WHO, in what
SCENARIOs, what PROCESSes need to be performed, and
what RULEs need to be satisfied. We verify our model in the
real case of the MEH (medical, eldercare, healthcare) crossover
service. SBRM supports the service better in our cases and
shows satisfactory efficiency, effectiveness, and reusability.

Keywords-scenario; healthcare; crossover service; require-
ments modeling;

I. INTRODUCTION

Requirements engineering has always been an impor-
tant research direction. As the population ages, healthcare
requirements elicitation becomes one of the core factors
in the healthcare service designing for service suppliers.
Researches about requirements engineering for kinds of
services have been ongoing [1], [2]. Kinds of requirement
oriented DSLs have been proposed in recent years [3],
[4], [5]. Though these studies proposed valuable ideas and
methods to describe the requirement, challenges arise when
it comes to crossover healthcare service.

Crossover healthcare service is an increasingly popular
pattern for healthcare services. Crossover healthcare service
integrates services in medical, eldercare and healthcare fields
and provides them to the elders. In crossover healthcare
service, challenges mainly come from crossover data fusion
and heterogeneous service integration. But before that, we
need to describe the requirements well and quickly.

The purpose of this work is to propose a requirement
modeling method which could help the product manager
(PM) or middle-end to describe and locate the requirements
more quickly and accurately.

We have cooperated with several internet healthcare com-
panies and get real cases.

We summarized the problems exist in the requirement
engineering of the modern healthcare industry and proposed
a scenario-based requirement model(SBRM) for crossover

healthcare services. The contributions of this paper are as
follows:

• A requirement modeling method called SBRM is pro-
posed. It formally defines terms that appear in require-
ments such as nouns like roles and their attributes,
scenarios, attributes, rules, etc. SBRM owns the ability
to express business process on two levels: the transition
between scenarios and business processes in scenarios.

• A kind of DSL for the requirement design called
SBRM-DSL is defined which enables the PMs and the
elders to design requirements together. The form of
SBRM-DSL is similar to natural language and it can be
transformed into executable code in a semi-automated
way, which could help shorten the development cycle
as well.

• A prototype system is developed to collaborate with
SBRM-DSL in a visual way. The system can automat-
ically check the grammar mistakes and make formal
inferences to identify the logical errors in the require-
ments, which could help to improve the development
efficiency and business security.

The rest of this article is organized as follows. Section
II is some related works about domain specific language
and requirement engineering. Section III illustrates a motiva-
tion case of MEH(medical, eldercare, healthcare) crossover
service and our research task. Detailed introduction and
definition of SBRM is shown in section IV. Section V is
a case study and a demonstration of our prototype system.
Section VI is the discussion. Finally, the conclusions are
given.

II. RELATED WORKS

In 2001, Halle et al. [6] show a way to construct an
application by using conceptions and techniques of business
rules through a book, which has become an authoritative
guide for system designers. Ten years later, Business Vo-
cabulary and Business Rules (SBVR) was proposed, which
is an adopted standard of the Object Management Group
(OMG) [7]. The goal of SBVR is to provide a standard
way to describe business rules through a set of formal and
detailed natural language. Based on SBVR, Bernotaityte et

al. [8] made some efforts to produce a methodology to
create vocabularies and rules of SBVR from Web Ontology
Language OWL2, which could help SBVR get a wider range
of applications. In 2013, Feuto et al. [9] presented a Domain
Specific Language (DSL) to express business rules in a more
natural and friendly way. They also built a tool to provide
auto-completion, automatic highlighting, and other useful
functions. Chittimalli et al. [10] proposed a method to detect
inconsistencies amongst the rules based on SBVR and First
Order Logic (FOL). Brzostowski et al. [11] apply SBVR
to the transportation system to help model the rules in the
domain. Mohanan et al.[12] presented a way to transform
natural language requirements to object-oriented models,
which is rather useful.

Except for SBVR, there are kinds of DSLs as well. In
2009, Dias et al. [13] used goals to treat requirements and
propose a DSL in the domain of Goal-Oriented Require-
ments Engineering (GORE). Within the same year, Melle-
gard et al. [3] presented another DSL which can help to spec-
ify and visualize requirement. Their method was evaluated
via a pilot controlled experiment and showed a satisfactory
result. Later in 2013, Buchmann et al. [14] illustrated the
challenge of the domain in the case of ComVantage EU and
proposed a modeling language to describe the requirements
sources, their definition methodology and other involved
components. Textual domain-specific modeling notation for
requirement specification is also studied and presented [4].
Ajit et al. [15] did some work to transform requirements
expressed in DSL to a formal specification language. Visic
et al. [5] proposed a language draft through a meta2 layer of
abstraction, and this method can be defined in a declarative
manner. Pescador et al. [16] proposed a notation inspired
by mind-maps called DSL-maps to alleviate the situation
that the automated transition from requirements to design is
largely neglected.

Requirements definition is also a research hotspot in
requirements engineering. Alqrainy et al. [17] introduced 28
risk factors and proposed a set of risk management strategies
through system analysis and requirements definition phase.
They confirmed their assumptions and method through a
web-based survey. Evaluation framework for requirements
definition was proposed as well based on the relationships
between the components of request [18]. Elansary et al. [19]
developed a Behavioral Pattern Analysis (BPA) modeling
methodology and developed an interactive software tool.
Requirements definition is also used to define a new de-
velopment method to speed up the software lifecycle and
increase efficiency [20], [21]. Requirements definition based
technologies used to guide users define their products or
experience are studied and presented as well, which could
be applied in many different domains.

These studies are valuable and meaningful and resolved
the problems in some specific situations. However, crossover
data fusion and heterogeneous service integration are not

considered in these works. In the following section, we will
illustrate the challenges with MEH crossover service.

III. MOTIVATION CASE & RESEARCH TASK

MEH crossover service is a typical case of crossover
healthcare service. MEH crossover service is a kind of
crossover service which integrates medical service, eldercare
service, and healthcare service. The services from those
three domains are amalgamated through a service center
and deployed to the community service stations (see Figure
1). Service integration will bring many conveniences to
healthcare services. For instance, the eldercare service would
not provide sugary food to an elderly person who has been
diagnosed with diabetes in medical service.

When MEH crossover service was just starting to build,
there were some problems appeared especially in the process
of requirements analysis. A same thing may be called dif-
ferently in different domains. Since MEH crossover service
is an integration of online and offline binding services from
different domains, it is hard to match each online service
with offline scenarios. Moreover, the requirements now are
more like a stack of business rules, which makes it hard
to see the business processes clearly. We summarized some
features in MEH crossover service requirement management
and analysis.

Feature 1: The requirements from different domains are
amalgamated. The requirements of MEH crossover service
are taken from the domains of medical, eldercare, and
healthcare. It could be difficult to unify the expressions. All
the nouns or verbs appeared in the requirements need to be
predefined.

Feature 2: The requirements need to cover both online
and offline scenarios. In MEH crossover service, online
business and offline scenarios are strongly bound.

Feature 3: The requirements are iterated continuously.
The iteration of requirements may occur in every domain.
How to keep requirements readable and reusable has become
an important issue.

These features are increasingly prominent in health-
care companies nowadays, especially when involved with
crossover services such as MEH crossover service.

On the basis of those features, we position the problems
SBRM needs to solve below.

Problem 1: The concepts in requirements of crossover
healthcare service are usually ambiguous and inconsistent,
which should be managed formally. A model needs to
be proposed to describe the attributes and properties of
these concepts appeared in the requirements to ensure the
concepts’ consistencies.

Problem 2: The iterations become frequent, while the
requirements are hard to reuse and extend. Data, process
and business logic are coupled together in traditional re-
quirement description, and minor modifications may affect
all requirement documents.

Figure 1: Architecture of MEH crossover service.

Problem 3: The integration of crossover services makes
logical errors in requirements occur frequently. So in ad-
dition to describing requirements in a formal way, we
also need to validate these requirements through logical
inferences.

To solve the problems above, SBRM is proposed. A
requirement organized by SBRM is mainly composed of 4
parts: concept, scenario, process, and rule. The concept is
an abstraction of a role or action. The scenario is a kind of
service operation block which bounds to offline scenes. The
process is an operation sequence in a scenario, and rules are
constraints for a process in a scenario. Meanwhile, a kind of
DSL is proposed to embody SBRM. The detailed definitions
are given in section 4.

IV. SBRM

This section formulates the key syntaxes and basic nota-
tions of SBRM. As mentioned above, there are four basic
elements in SBRM: concept, scenario, process, and rule.
The concept is constructed and maintained throughout a
project or within an alternative domain like a company. And
for a piece of requirement, there is a scenario, a process,
and several rules. The relation of the elements and basic
notations is presented in Figure 2 by the Unified Modeling
Language (UML) diagram.

For convenience of later interpretation, we expect the

existence of the following pairwise disjoint countable infinite
sets: Tp of primitive types, Tac of action type, Tru of rule
type, C of classes (names), AT of attributes, AC of actions
(names), IDC of identifiers for each class C ∈ C. A type is
an element in the union T = Tp

⋃
Tac

⋃
Tru

⋃
C.

The domain of each type τ in T , denoted as DOM(τ), is
defined as follows:

1) if τ ∈ Tp is a primitive type, the domain DOM(τ) is
some known set of values (integers, strings, etc).

2) if τ ∈ Tac is an action type, DOM(τ) = positive/pas-
sive.

3) if τ ∈ Tru is a rule type, DOM(τ) = TriggerRule/
AttributeRule/ OperationRule.

4) if τ ∈ C is a class (name), DOM(τ) = IDt.
In order to have a specific understanding of the entire

requirement in SBRM, we give the definition of requirement
first.

Defintion 1. A requirement is a five-tuple (C, Γ, S, P, R), C is
the identifier of the requirement, Γ is a schema of concepts,
S is a set of scenarios with respect to Γ, P is a process with
respect to Γ and S, R is a set of business rules with respect
to S.

In this article, we give our definitions of the rest notations
in SBRM through a top-down approach. So you will see def-
initions of each part first, and following is their components.

+ Identifier: string
- Role: Executor/Object
- Action:
 BaseAction/RoleAction

Conception

+ Identifier: string
- Operation:
 OperationName[]

Process

+ OperationIdentifier: string
- Action: ActionConcept
- Object:
 ObjectConcept[]

Operation

+ From: Operation
+ To: Operation
- Condition: Condition

Relation

+ ObjectIdentifier:
string
- ObjectType: string

ObjectConcept

+ActionIdentifier: string
- ActionType:
 “Postive”/ “Passive”

ActionConcept

+ Identifier: string
- Owner: “SYSTEM”

BaseAction

+ Identifier: string
- Owner: Role

RoleAction

+ Identifier: string
- Conception:
 ConceptionIdentifier
-Scenario: ScenarioIdentifier
-Process: ProcessIdentifier
-Rule: RuleIdentifier

Requirement

+ Condition:
 Boolean/DONE/EST

AtomCondition

+ Type: AND/OR/NOT

Operator

+ AtomCondition
 AtomCondition[]
+ Operator:
 OperatorType[]

Condition

+ Identifier: string
- Executor: Role
- PreCondition: Condition
- Effect: Effect

Scenario

+ Identifier: string
- Condition: Condition
- Operation:
 OperationIdentifier

Rule

+ Action:
ActionConcept

TriggerRule
+ Action:
BaseConcept

AttributeRule
+ Action:
RoleConcept

OperationRule

+ Identifier: string

Executor

- Condition: Condition
- Scene:
SceneIdentifier

Effect

- Condition: Condition
PreCondition

0…*

0…*

0…*

0…*0…*

0…*

1

1

1

1 1

1

1

1

1

1

0…*

1

1

1

1

1

1

1

1

1 1 1

Figure 2: The UML diagram of basic notations in SBRM.

A. Concept

Concept here is a data structure to express the nouns and
verbs appeared in the requirements. In a concept, the nouns
are called roles and the verbs are called actions. Each action
is associated with a role, which means an action can only
be performed by a specific role.

Defintion 2. A concept is a four-tuple (Cco, Ro, A, µra),
where Cco is the identifier with respect to Γ, Ro and A are
the set of roles and actions in this concept respectively, µra

is the partial mapping that assigns each action to role.

In SBRM, a role could be a participant of the business
like a customer or it could be just an object involved in the
business like a piece of goods or an order. The role does
not correspond to data directly but attributes instead. A role
could be the executor of a scenario. For instance, for the
scenario submit order, the corresponding executor could be
customer. There is a reserved role called SYSTEM in our
model, the action associated with it is called a base action.
Otherwise, the action is a role action.

Defintion 3. A role is a four-tuple (Cro, AT, τ , µat), where
Cro is the identifier, AT is the attributes of this role, τ
is types of the attributes, µat is the partial mapping that
assigns each AT in DOM(τ (AT)).

Defintion 4. An action is a binary (Cac, τ , D), where Cac

is the identifier, τ is the action type, D is the description of
the action.

The relationships of each part in the concept are shown
in figure 3.

B. Scenario

A scenario could be an abstract situation of the business.
It may appear as the form of a web page or just a popup
module. A scenario is bound with an executor who would
use and handle all the functions in the scenario. Meanwhile,
the precondition is also provided because there are usually
conditions you need to satisfy first to perform your operation
in the scenario. An effect of a scenario indicates the subse-
quent operations after the execution of the main process of

Table I: Grammar of the SBRM-DSL

Type Statement Specifications in EBNF Meaning
General note_statement = ’%’, sentence; The way to write annotations.
Condition atom_statement = [NOT], < ’TURE’ | ’FALSE’ | ’DONE(’ operation_statement ’)’ | ’EST(’

identifier ’,’ identifier ’,’ action ’)’ >;
condition_statement = ’atom_statement’, { < ’AND’ | ’OR’ >, condition_statement };

The way to describe the condition ε
mentioned in Definition 11.

Requirement concept_statement = ’import’, concept_file_name;
concept_file_name = identifier, ’.cpt’;
requirement_statement = ’requirement’, requirement_name, ’is in scenario’, scenario_name,
’with process’, process_name, { ’and rule’, rule_list }, ’.’;
rule_list = rule_name, { ’,’, rule_name };
requirement_name = identifier;

The definition of requirement, which
first introduces concepts’ file and
then specifies an actual requirement
by combining a scenario, a process,
and a series of business rules.

Role role_statement = ’role’, role_name, ’has’, attribute_list, ’with action’, action_list, ’.’;
attribute_list = attribute_statement, { ’,’, attribute_statement };
attribute_statement = identifier, ’:’, attribute_type;
attribute_type = ’integer’ | ’string’ | ’boolean’ | ’object’;
action_list = identifier, { ’,’, identifier };
role_name = identifier;

The definition of the role. Note that
a role usually contains a list of at-
tributes for a role and a series of
actions.

Action action_statement = ’action’, action_name, ’is’, action_type, ’which’, sentence, ’.’;
action_type = ’positive’ | ’passive’;
action_name = identifier;
identifier = ’a..z,$,_’, { ’a..z,$,_,0..9’ };
sentence = { character };
character = ’based on the unicode character set’;

The definition of the action. An ac-
tion is composed of its type and
description sentence.

Scenario scenario_statement = ’scenario’, scenario_name, ’has executor’, executor_list, [’with precondi-
tion’, condition], ’and link to’, effect_list, ’.’;
executor_list = role_name, { ’,’ , role_name };
effect_list = effect_statement, { ’,’ , effect_statement };
effect_statement = scenario_name, ’if’, condition;
scenario_name = identifier;

The definitions of the scenario and
effect. An executor will enter into
a scenario when it satisfies the sce-
nario’s precondition and jumps to the
next scenario according to the condi-
tions of the effects in the effect list.

Process process_statement = ’process’, process_name, ’is’, operation_list, ’.’;
operation_list = operation_statement, { ’,’ , operation_statement };
operation_statement = action_name, ’:’, [object_name];
process_name = identifier;
object_name = identifier;

The definitions of the process and
operation. An operation will include
an action, and an object when the
action’s type is positive.

Rule operation_rule_statement = ’rule’, rule_name, ’means’, operation_statement, ’can be performed
if’, condition, ’.’;
trigger_rule_statement = ’rule’, rule_name, ’means’, operation_statement, ’will be performed
if’, condition, ’.’;
attribute_rule_statement = ’rule’, rule_name, ’means’, condition, ’should be true.’;
rule_name = identifier;

The definitions of the three types of
rules. Note that different types of
rules provide different kinds of con-
straints according to their condition.

+Identifier: string
- Role: Executor/ Object
- Action:
 BaseAction/RoleAction

Conception

+ Identifier: string
- Owner: RoleIdentifier

RoleAction

+ Identifier: string
- Type: integer/ string/ etc.

Role

+ Identifier: string
- Owner:“System”

BaseAction

+ Identifier: string
- ActionType:
 ‘positive’ / ‘passive’
- Description: string

Action

+ Identifier: string
Excutor

+ Identifier: string
Object

Figure 3: The UML diagram of concept.

the scenario. Here, the effect is mainly used to indicate the
logical method to find the next scenario.

Defintion 5. A scenario is a four-tuple (Cs, e, P, E), where
Cs is the identifier, e is the executor of the scenario with

respect to role in Γ, P is the precondition, and E is the
effect.

Defintion 6. An effect is a triple (ε, ρ, µep), where ε is a set
of conditions, ρ is a set of scenarios with respect to Cs, µep

is a onto mapping that assigns each condition to scenario.

C. Process

In SBRM, a process always corresponds to a scenario.
And it is, in fact, a sequence of operations. The subject of the
operations is the executor of the relative scenario by default.
A process indicates what the user (executor) should do under
a scenario orderly. We use relations to keep the order, and
conditions bound on them can ensure the operations are
taken properly.

As we have mentioned at the beginning of this section,
there are two types of actions: positive and passive. When
the type of the action is passive, the object of the operation
is NULL by default.

Defintion 7. A process is a triple (Cp, O, R), where Cp is

the identifier, O is the set of the operations, and R is the
relations among the operations.

Defintion 8. An operation is a binary (Cop, A, σ), where
Cop is the identifier, A is the aciton of the role Ro with
respect to scenario Cs, σ is the objects with respect to Γ.

Defintion 9. A relation is a triple (Cre, from, to, ε), where
Cre is the identifier, from and to are names of the operations
and ε is the condition.

D. Rule

Rule is used to define business rules. There are three types
of rules in SBRM:

• OperationRule : Operation rule is used to express
an operation can be performed if the corresponding
condition is true,

• AttributeRule : Attribute rule is used to express that
attributes with respect to Γ must meet the constraints
if the corresponding condition is true,

• TriggerRule : Trigger rule is used to indicate that
operations would be performed automatically as long
as the corresponding condition is true.

Defintion 10. A rule is a four-tuple (Cr, ε, o, τ), where
Cr is the identifier, ε is the condition of the rule, o is the
corresponding operation, and τ is the type of the rule.

Defintion 11. A condition ε could be one of the following:
1) Boolean,
2) DONE(A, O), where A is an action of Cro and O is

the target object of the action,
3) EST(a1, a2, comp), where a1, a2 are two attributes of

Cro and comp is comparison operation,
4) ε1 AND ε2, where AND is a reserved word which

means that the condition is true iff so is both ε1 and
ε2,

5) ε1 OR ε2, where OR is a reserved word which means
that the condition is false iff so is both ε1 and ε2,

6) NOT ε, where NOT is a reserved word which means
the condition is opposite to ε.

In definition 11, DONE(A, O) is true when executor of the
scenario has taken action A to object O. If the type of A is
passive, then O will be NULL by default. And EST(a1, a2,
comp) is true when a1, a2 satisfy the comparison operation
comp.

E. SBRM-DSL

We design a kind of DSL called SBRM-DSL with the
syntaxes and notations in SBRM to express requirements
in the field of e-commerce. We follow the EBNF standard
to implement our language here. Table I introduces our
language in the similar order as above, it describes the
metasyntax notations of the requirement, concept, scenario,
process, rule and their auxiliary elements one by one. Then

PMs can describe their requirements by our language very
clearly and efficiently as long as they follow the grammar. In
the next section, we illustrate the effectiveness of our DSL
by a practical scenario in Alibaba.

V. CASE STUDY

To illustrate SBRM, we apply it to an example of con-
structing a requirement of MEH crossover service. In this
case, we will construct a requirement of the service visiting
healthcare examination through SBRM. And this procedure
should be performed by PM or middle-end staff.

Build the concepts involved in the requirement. This
step determines all participants in the service as well as all
their attributes and possible operations. All the concepts of
the services in one system would be merged and generate
an overall concept library. A concept example is shown in
Example 1. The reserved words in SBRM-DSL are shown
in bold.

Example 1. role doctor has name:string, age:int, ma-
jor:string, community:string with action draw_blood,
take_pulse, check_blood_pressure, check_eye, check_tooth,
call_relative.

Formalize the scenario through SBRM. As we have
built the concept used in this requirement, the scenario
needs to be defined next. In this step, the name, executor,
precondition and effect of the scenario should be confirmed
so that subsequent steps could be taken (see Example 2).

Example 2. scenario visiting_healthcare_examination_sce-
nario has executor doctor with precondition EST(patient,
home, at) and link to DONE(draw_blood):blood_test.

Construct the business process of the scenario. After
the formalization of the scenario, the business process needs
to be constructed. In healthcare services, the business pro-
cess logics are always simple. Therefore in SBRM, a process
consists of a sequence of operations (see Example 3).

Example 3. process healthcare_examination_process is
draw_blood:patient, take_pulse:patient, check_blood_pres-
sure:patient, check_eye:patient, check_tooth:patient.

Configure the corresponding business rules. With the
concept built, scenario defined and process constructed, rules
need to be configured now. As defined in section IV, there are
three types of rules in SBRM: OperationRule, AttributeRule,
and TriggerRule. Each of these three types can express one
type of business constraint. Example 4 is a set of rules in
this case.

Example 4. rule at_home_rule means EST(patient, home,
at) should be true.
rule call_relative_rule means call_relative can be per-
formed if EST(patient, draw_blood, refuse).

(a) Definitions of roles and actions. (b) Definitions of requirements, scenarios and processes.

Figure 4: A demo of MEH crossover service with SBRM-DSL.

Generate the requirement of the service. A requirement
is a combination of concepts, scenarios, processes, and rules.
This makes the four notations decoupled and could be reused
easily (see Example 5).

Example 5. import visiting_healthcare_examination_con-
cepts.cpt
requirement visiting_healthcare_examination is in scenario
visiting_healthcare_examination_scenario with process
healthcare_examination_process and rule at_home_rule,
call_relative_rule.

To illustrate our SBRM-DSL, we construct a tool with the
GUI to show the relations between the roles as well as their
attributes and actions, as shown in Fig. 4a. Also, our tool can
display the relations among the 4 parts in SBRM in the form
of UML, as shown in Fig. 4b. Actually, Fig. 4 demonstrates a
closed loop requirement flow of the MEH crossover service.
To meet these requirements, we design 7 roles with 19
actions to execute a total of 9 processes in 9 scenarios.
We can see that with our customized language, the division
of tasks becomes more specific and roles’ ambiguities are
eliminated. And because of the conciseness of our language,
the PMs can easily write similar statements to describe
their actual requirements. Also, the statements can be semi-
automatically converted into executable code, which speeds
up the business process.

Until here, we have got the concept including roles and
their actions, scenario with process and rules in it. And you
will find that a piece of requirement has been fully defined
by SBRM. But we still do not know whether SBRM is able
to solve the problems proposed in section three, so it is
discussed in the next section.

VI. DISCUSSION

In this section, we will discuss whether SBRM solve our
research problems proposed in section three.

All the concepts are managed formally by our model. By
using concept, all the nouns appeared in the requirements,
like executor and objects are abstracted as roles in concept.
And the verbs are abstracted as actions in concept. Classified

according to whether the relative role of the action is
SYSTEM or a role, there are base actions and role actions.
Classified according to the relation between action and
relative, there are positive actions and passive actions. All
the nouns and verbs are managed formally and well. Also,
our model ensures these concepts’ consistencies between
different requirements.

Requirements can be reused by later PMs and extensible
by the scenario part in SBRM. By dividing a whole business
requirement into several scenarios, processes and rules in
requirements are divided as well. On one hand, the model
becomes more flexible and owns strong scalability, because
a new requirement could be a new scenario and so is
the change. On the other hand, this could be a division
of development task for different departments at the same
time, which could help save some time from requirement
analyzing.

We can validate the requirements through logical infer-
ence in our visual tools. Like other IDEs, our visual tools
can also check grammar mistakes before the statements
are compiled by the compiler. When the action or data
abuse occurs, or undefined concept appears, our tools can
detect these errors automatically. This increases the rigor
of the requirements. Meanwhile, as we can see that our
tools can convert the statements into relation graphs and
UML diagrams so that if there are some logical errors in
the statements, the conversion process will be terminated.

VII. CONCLUSION

In this work, we construct SBRM to deal with the prob-
lems of requirements engineering in crossover healthcare
service. We give the definitions and examples in the study
case. We locate research tasks and discuss how they are met.
Though SBRM may not be perfect now, we believe that we
have achieved some relevant results.

For future works, as illustrated in the article, SBRM
defined requirements should be compiled to the formal lan-
guage, through which the requirements could be converted
into applications or services automatically.

ACKNOWLEDGMENT

This work is supported by the national key re-
search and development program of China under grant
No.2017YFB1401202 and the key research, development
program of Zhejiang Province under grant No.2017C01013
and Model Information Service Industry Program of Guang-
dong Province(GDEID2010IS049).

REFERENCES

[1] D. Georgakopoulos and M. Papazoglou, “Requirements engi-
neering techniques for e-services,” pp. 331 – 352, 2017.

[2] L. Kolos-Mazuryk, G. J. Poulisse, and E. V. Pascal, “Re-
quirements engineering for pervasive services,” Acm Sigops
Operating Systems Review, 2017.

[3] N. MellegÃěrd and M. Staron, “A domain specific modelling
language for specifying and visualizing requirements,” vol.
457, 2009.

[4] O. Olajubu, “A textual domain specific language for require-
ment modelling,” in Joint Meeting on Foundations of Software
Engineering, 2015, pp. 1060–1062.

[5] N. Visic, H. G. Fill, R. A. Buchmann, and D. Karagiannis,
“A domain-specific language for modeling method definition:
From requirements to grammar,” in IEEE International Con-
ference on Research Challenges in Information Science, 2015,
pp. 286–297.

[6] B. V. Halle and R. G. Ross, “Business rules applied: Building
better systems using the business rules approach,” John Wiley
& Sons Inc, 2001.

[7] C. C. Eglantine and business, Semantics of Business Vocab-
ulary and Business Rules. TypPRESS, 2011.

[8] G. Bernotaityte, L. Nemuraite, R. Butkiene, and
B. Paradauskas, Developing SBVR Vocabularies and
Business Rules from OWL2 Ontologies. Springer Berlin
Heidelberg, 2013.

[9] P. B. Feuto, S. Cardey, P. Greenfield, and W. E. Abed,
“Domain specific language based on the sbvr standard for
expressing business rules,” in Enterprise Distributed Object
Computing Conference Workshops, 2013, pp. 31–38.

[10] P. K. Chittimalli and K. Anand, “Domain-independent method
of detecting inconsistencies in sbvr-based business rules,” in
International Workshop on Formal Methods for Analysis of
Business Systems, 2016, pp. 9–16.

[11] K. Brzostowski, “Modeling business rules for transportation
systems,” 2016.

[12] M. Mohanan and P. Samuel, “Software requirement elicitation
using natural language processing,” 2016.

[13] A. Dias, V. Amaral, and J. Araujo, “Towards a domain
specific language for a goal-oriented approach based on
kaos,” in International Conference on Research Challenges
in Information Science, 2009, pp. 409–420.

[14] R. A. Buchmann, D. Karagiannis, and N. Visic, “Require-
ments definition for domain-specific modelling languages:
The comvantage case,” in International Conference on Busi-
ness Informatics Research, 2013, pp. 19–33.

[15] S. Ajit, O. Olajubu, S. Thomson, and M. Edwards, “Model
transformation of high-level requirements in a domain specific
language into a formal specification language,” 2015.

[16] A. Pescador and J. D. Lara, “Dsl-maps: From requirements
to design of domain-specific languages,” in Ieee/acm Interna-
tional Conference on Automated Software Engineering, 2016,
pp. 438–443.

[17] S. Alqrainy and H. Hijazi, “Managing risks in the system
analysis and requirements definition phase,” International
Journal of Computer Applications, vol. 99, no. 3, pp. 23–29,
2014.

[18] M. Alnabhan, A. Haboush, A. Albadareen, and M. Alnaway-
seh, “An evaluation framework for requirements definition of
software development,” 2014.

[19] A. Elansary, “Intelligent agent travel reservation system re-
quirements definitions using the behavioral patterns analysis
(bpa) approach,” 2015.

[20] T. R. Silva, “Definition of a behavior-driven model for re-
quirements specification and testing of interactive systems,”
in Requirements Engineering Conference, 2016, pp. 444–449.

[21] L. Hannola, K. Elfvengren, and M. Tuominen, “A group
support system process for the definition of software re-
quirements,” International Journal of Innovation & Learning,
vol. 7, no. 2, pp. 171–186(16), 2017.

