
EasySpider: A No-Code Visual System for Crawling the Web 
Naibo Wang 

National University of Singapore 
Singapore 

naibowang@u.nus.edu 

Jianwei Yin 
Zhejiang University, Hangzhou 

China 
zjuyjw@cs.zju.edu.cn 

Wenjie Feng 
National University of Singapore 

Singapore 
wenchiehfeng.us@gmail.com 

See-Kiong Ng 
National University of Singapore 

Singapore 
seekiong@nus.edu.sg 

ABSTRACT 
The web is a treasure trove for data that is increasingly used by 
computer scientists for building large machine learning models 
as well as non-computer scientists for social studies or marketing 
analyses. As such, web-crawling is an essential tool for both com-
putational and non-computational scientists to conduct research. 
However, most of the existing web crawler frameworks and soft-
ware products either require professional coding skills without an 
easy-to-use graphic user interface or are expensive and limited in 
features. They are thus not friendly to newbies and inconvenient 
for complicated web-crawling tasks. 

In this paper, we present an easy-to-use visual web crawler 
system, EasySpider, for designing and executing web crawling 
tasks without coding. The workfow of a new web crawling task can 
be visually programmed by following EasySpider’s visual wizard 
on the target webpages using an intuitive point-and-click interface. 
The generated crawler task can then be easily invoked locally or as a 
web service. Our EasySpider is cross-platform and fexible to adapt 
to diferent web-resources. It also supports advanced confguration 
for complicated tasks and extension. The whole system is open-
sourced and transparent for free-access at GitHub 1, which avoids 
possible privacy leakage. 

CCS CONCEPTS 
• Information systems → World Wide Web; • Human-centered 
computing → Visualization systems and tools. 

KEYWORDS 
Web Crawler, Visualization, Data Collection, GUI, Web Service 

ACM Reference Format: 
Naibo Wang, Wenjie Feng, Jianwei Yin, and See-Kiong Ng. 2023. EasySpider: 
A No-Code Visual System for Crawling the Web. In Companion Proceedings 
of the ACM Web Conference 2023 (WWW ’23 Companion), April 30–May 04, 
2023, Austin, TX, USA. ACM, New York, NY, USA, 4 pages. https://doi.org/ 
10.1145/3543873.3587345 

1https://github.com/NaiboWang/EasySpider 

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for proft or commercial advantage and that copies bear this notice and the full citation 
on the frst page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s). 
WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA 
© 2023 Copyright held by the owner/author(s). 
ACM ISBN 978-1-4503-9419-2/23/04. 
https://doi.org/10.1145/3543873.3587345 

1 INTRODUCTION 
The web has become the go-to source for data in a wide range of 
real-world applications. For example, internet companies routinely 
collect data about their products or reputation online for product 
improvement or promotion, fnancial professionals collect timely 
data from the web for market analysis and forecasting, and social 
scientists increasingly look to the web for large-scale social behav-
ioral data that can be difcult or costly to observe otherwise. The 
recent exceptionally successful big machine learning models such 
as ChatGPT [4] has further illustrated the usefulness and power of 
massive amounts of internet-sourced data. This raises the natural 
question of: how to obtain these public online data from diferent 
domains in a simple and convenient way? and how can we design 
an easy-to-operate, safe, fexible, automatic, and lightweight tool for 
general purpose web-crawling? 

Web crawlers [3] has thus become an essential and widely-used 
tool for researchers and practioners from many disciplines in col-
lecting data from the World Wide Web. While there are many open 
frameworks for web crawling such as Scrapy, Beautiful Soup, and 
PySpider [1], most if not all of them require users to have a deep 
knowledge of the mechanism of the web crawler and program-
ming skills, such as Java or Python, which is a big challenge for the 
non-programmers from other disciplines. They are also often not 
lightweight—to build even a simple task for collecting data usually 
require writing many lines of code. 

There are commercial software products that provide user-friendly 
graphical user interface (GUI) [5] for performing the crawler tasks 
without heavy programming such as WebHarvy, Visual Scraper, 
Web Scraper, Octoparse, and so on. However, they may not be af-
fordable to all (they claim as "free" softwares but actually not), and 
most of such non-coding crawler products are not open-source. 
While there are some open source visual crawlers, they are often 
not fully functional (e.g. Portia does not support flling forms), not 
well-maintained, lack complex workfow support which makes it 
hard or impossible for advanced users to customize and extend 
the functionality based on their needs, such as to support dynamic 
expansion of tasks and multi-layer loop nesting. 

It can be challenging to design and develop an easy-to-use and 
well-designed crawler system. Other than technical difculties such 
as robust system design, good compatibility, and convenient inter-
action, etc., the issue of user-data privacy protection [2] should also 
be considered. As there is often the need to log in to access the data 
(e.g., for the online social media or forum platform), passing the 
user’s credentials such as username & password or local cookies, 
to black-box crawler products can result in the risk of leakage of 

192

https://doi.org/10.1145/3543873.3587345
https://doi.org/10.1145/3543873.3587345
https://github.com/NaiboWang/EasySpider
https://doi.org/10.1145/3543873.3587345
mailto:wenchiehfeng.us@gmail.com
mailto:naibowang@u.nus.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543873.3587345&domain=pdf&date_stamp=2023-04-30


WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA 

Visual Wizard Browser

Web Browser

Relay Repeater

Workflow Manager

Task Generation Subsystem

Front-end DatabaseBack-end

Task Processor

Task Management Subsystem

Data Store

Task Execution Subsystem

Figure 1: High level system design of EasySpider. 

personal privacy information, especially if the crawler task runs on 
the cloud servers. For safer web scraping, a transparent white-box 
system that keeps private data locally would be thus preferable. 

In this paper, we design and develop a new web crawler software, 
EasySpider, which is: 

• Interactive and user-friendly: it provides a user-friendly 
point-to-click GUI for quick and easy task design for non-
programmers 2. 

• Flexible: it is able to adapt to various web resources and 
platforms, dynamic content support 3. 

• Confgurable: it supports easy design of complicated crawl-
ing tasks with unlimited loops, if-conditions, and felds. 

• Cross-platform: it supports Windows, Linux, and MacOS. 
• Open-Source & Trustworthy: the source code is publicly 
available, making it a transparent and white-box software, 
with no privacy leakage risk. 

• Free: all features listed in the manual are free of charge. 
Our system is suitable for both general users and experts, and it 

can also serve as microservice to incorporate with other systems 
(e.g., DBMS, HDFS, and others). 

2 SYSTEM ARCHITECTURE 
Figure 1 illustrates the overview of our EasySpider system. It con-
sists of three subsystems for generation, management, and execu-
tion of a web crawling task, respectively. Each of them is introduced 
in the following sections. 

2.1 Task Generation Subsystem 
The task generation subsystem is responsible for new crawling task 
creation. Users design their tasks via a visual web client consisting 
of three main components: Visual Wizard Browser, Relay Repeater, 
and Workfow Manager. The detailed process is as follows. The user 
starts by entering the URL of a target web page, and defne the whole 
task workfow by point-and-click in the Visual Wizard Browser, 
i.e., she can select any element(s) on the web page(s) she wants 
by mouse click, and follows the wizard in the browser to defne 
some operations, such as collecting data, inputting in the textbox, 
or loop-clicking links to collect data from the opened new pages, 
2Only a little basic knowledge, such as XPath, is needed to modify the task fow. 
3Can collect web content generated by JavaScript (AJAX). 

Naibo Wang, Wenjie Feng, Jianwei Yin, and See-Kiong Ng 

etc. Each operation defned by the user will then be listed in the 
Workfow Manager, which is a visual user interface that displays the 
whole workfow of this task; it also shows the key properties of the 
operations such as the waiting time before starting the operation, 
the XPath of the selected element, the default input for the textbox, 
the number of screen scrolls, etc. All of these properties can be 
modifed freely on the GUI to make the whole process smoother 
and user-customizable. 

Our system can deal easily with complex structures in a webpage. 
There are often situations where we need to perform iterations, such 
as clicking all links on product names to check their detail pages 
on shopping websites, or collecting the titles in the list of items 
returned by a Google search, etc. In many cases, we will need the 
nested loops for more complex operations, e.g., keeping clicking 
the next page button and capturing the news headlines of each 
page. Therefore, EasySpider supports the loop operation for users 
to freely defne the advanced task workfow; and the loops can be 
nested infnitely to perform more complicated crawling tasks. At the 
same time, users can also defne the conditional judgment operation, 
i.e., the "IF" condition, to expand the scenario, for example, setting 
the "Click" operation to be executed only when the page contains a 
"Next" Button. 

EasySpider also supports the "clipboard" function for all the 
above operations, including loop, conditional judgment, input the 
text, click an element, collect data, etc. That is, users can CREATE, 
COPY, PASTE, CUT, UPDATE, and DELETE any operation in 
the workfow freely through the workfow manager. 

The Relay Repeater is the bridge between the Visual Wizard 
Browser and Workfow Manager to transmit the operations’ infor-
mation, including the operation type, the URL of web pages, XPaths 
of target elements, etc. 

2.2 Task Management Subsystem 
Once the task is created by the previous steps, the entire processing 
workfow and metadata will be saved in the Task Management 
Subsystem, and can be invoked in the form of a Web service. For 
instance, every input operation in the workfow will be mapped 
as an input parameter of the service API, such as the URL(s) of 
the ‘Open Page’ operation or the text in a searching box of the 
‘Input Text’ operation. All task information is stored in the Database 
(MongoDB), users can read, update, remove, and invoke their tasks 
via the provided API or GUI of the Front-end. 

Before executing the task, we need to preset the input parameters 
for it, which is called “invoke" the task. For instance, to get all news 
about a celebrity in a certain time period, we need to specify the 
value of the related input parameters, i.e., the celebrity’s name, the 
start and end time, etc. Users can set those values through the Front-
end GUI or call the API provided by the Back-end. After getting the 
parameters, the Back-end will return a task-execution number ��� 
to the users (or the client) used for the next step. 

2.3 Task Execution Subsystem 
Finally, the Task Execution Subsystem runs a given task by reading 
the execution number ��� produced in the previous subsystem, 
which contains key information about the task. 

The Task Processor is the core component here, and it reads the 
workfow information and input parameters by the ��� from the 

193



EasySpider: A No-Code Visual System for Crawling the Web 

21
5

3

6

21
5

3

6

Figure 2: UI for the Task Generation Process of EasySpider to collect the names and detail page links of specifed products 
from eBay. Step 4 is skipped since it is similar to Step 3. 

Figure 3: UI of EasySpider’s workfow for the task of collect-
ing product information on eBay. 

Task Management Subsystem, then controls the Web Browser to 
automatically execute the operations defned in the workfow, such 
as collect data or click button from the specifc web page(s), and 
exports the results into the Data Store in various formats, such as 
.csv, .json, and databases like MongoDB. 

The workfow will be executed sequentially from top to bottom. 
If loops and conditional judgments are encountered, they will be 
executed according to the corresponding logic, i.e., no matter how 
many loops and nested loops inside the task workfow, the Task 
Processor will ensure the correct execution of the task through 
techniques/algorithms, e.g., the program trees and recursion. Here, 
the end-users can treat the whole process as a black box if they do 
not care about specifc implementation details. 

3 DEMONSTRATION 
We give a simple running example of EasySpider to demonstrate 
how to use our system. Let’s say we are interested to collect the 
names and corresponding link of the detail pages of the top � 
(specifed later) pages of products searched for a given keyword on 
an e-commerce website such as eBay (https://www.ebay.com). 

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA 

Given a keyword and �, say "iPhone" and 20, we would like the 
product information collection task (refers as "task" later) workfow 
to be executed as follows: 

(1) Enter the product keyword in the searching box and click 
the "Search" button. 

(2) Identify and collect the name and link of the products in the 
main product list shown on the web page. 

(3) Click the "Next" button to go to the next page. 
(4) Repeat step 2 and 3 for � times. 

Each time we run this information collection task, we would like to 
be able to modify the keyword (step 1) and � (step 4) at will, and all 
of the above steps should be automatically executed accordingly. 

3.1 Task Design & Creation 
Figure 2 shows the whole process to create the above crawling task, 
and Figure 3 shows the overview workfow. 

As we can see, the total task creation process only contains the 
following 6 steps after entering the URL of the target website, eBay. 

(1) Select the searching textbox with mouse right-click to iden-
tify it on the page, which will make the textbox highlighted 
in bright blue, then appear a toolbox, which contains a lot of 
options based on the selected element type, such as selecting 
all similar elements, inputting text, and collecting text from 
the textbox, etc. Here, we select the "Input Text" option by 
mouse click4. 

(2) Input a keyword, e.g., "iPhone" in Fig. 2, and click the Confrm 
button at the toolbox. The keyword will be automatically 
flled into the searching box, and an operation "Input Text" 
will then be added to the workfow, as shown in Fig. 3. 

(3) Select the "Search" button on the webpage and click the 
"Click this Button" option in the toolbox. Then the browser 
will automatically click the search button and receive the 
returned product list page, and the "Click Element" operation 
will also be added to the workfow at this moment. 

(4) Select the "Next" button at the bottom of the webpage and 
click the "Loop-click this link" option. This step is similar to 
step 3 and ignored in Fig. 2. 

(5) Select the ‘title/name’ of the 1st item, we can see in addition 
to the bright-blue highlighted frst product title, all other 
products’ titles are also indicated by the blue border at the 
same time in Fig. 2, which are automatically detected by our 
system. Then click the "Select All" option in the toolbox to 

4Left-click unless otherwise specifed. 

194

https://www.ebay.com


WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA 

(a) UI for the task information. (b) UI for the task invocation. (c) Sample log of Task Processor. (d) Sample of the collected data. 

Figure 4: An example of the Task Execution Process of EasySpider. 

let the system select all recommended items, which makes 
all products’ title/name be marked with bright blue. 

(6) After step 5, the toolbox will show a feld flled with example 
data, i.e., the product names and links here. Click the "Collect 
Data" option in the toolbox to create a loop in the workfow 
to collect all product names and their links. 

As shown, the task creation process can be completed quickly 
in minutes, and intuitively with just a few mouse clicks. For more 
complex task such as looping to open detail pages, and collecting 
the name, price, # of stars, etc. of products, please refer to our 
tutorials and video-clips. 

3.2 Task view and execution 
We can inspect the task information via the Task Management 
Subsystem. Figure 4(a) shows the meta information of the task, 
including task name, description, input parameters (e.g., search 
keyword), and output parameters (e.g., product name). Users can 
click the "Invoke Task" button to execute the task. 

As Fig. 4(b) shows, we can execute the task by using the GUI or 
via the provided API. Only 2 simple steps are required for execution, 

(1) Specify the search keyword and the number of loops (pages) 
�. Here, we entered "Computer" and 10. 

(2) Click the "Directly Run Locally" button to run the task. 
After that, EasySpider will run the task automatically. 
As mentioned, the workfow in Figure 3 will be executed from 

top to down, where the loop will follow the "do-while" rule. In 
other words, our system will perform the web crawling task by 
automatically entering the keyword "Computer" into the searching 
box, clicking the search button, and repeating the following steps 
10 times in a "do-while" loop, 

(1) Collect all product names and their links at current page by 
iteratively locating the elements in the product list, which is 
shown as the "Loop Collection" operation inside the "Loop 
Click Next Page" operation in Figure 3. 

(2) Click the "Next" button to jump to the next page, which is 
shown as the "Loop Click Next Page" operation in Figure 3. 

Figure 4(c)-4(d) shows the example output logs and collected 
data after executing this task, allowing the users to monitor the 
progress of the task and the results. 

3.3 Performance Evaluation 
We tested this eBay collection task on a PC with Intel Core i7-
8700K CPU, 64GB memory and Windows 10 x64. When executing 
the task, EasySpider utilized an average of 7% of CPU and 380 MB 

Naibo Wang, Wenjie Feng, Jianwei Yin, and See-Kiong Ng 

of memory. It takes around 6 seconds to collect data on a single 
page, and the overall time for collecting data from all 10 pages is 90 
seconds, with all operations included like clicking "Next" button. 

4 DISCUSSION 
Limitations: While EasySpider can collect a majority of web 
pages on the Internet, certain resource types such as encrypted 
video streams cannot be gathered directly. We also need to confgure 
tasks with caution to prevent getting blocked by web servers. Other 
cases such as how to collect on heterogeneous websites or deal 
with very large amount of data, please refer to our documentation. 

Ethics: Inevitably, there will be some risk of malicious use or 
data infringement issue, e.g., automatic order swiping and ticket 
grabbing, but this is contrary to our expectations. As a tool de-
veloper, we only hope that it can be used for legitimate purposes. 
We advocate the reasonable and legal utilization of our system, 
respecting and protecting the data security and privacy. 

5 CONCLUSION 
We present and develop EasySpider, a point-and-click visual web 
crawler system to enable quick and easy customizable design of 
crawler tasks for both non-programmers and experts. The generated 
crawler tasks can be invoked locally or in the form of web services 
for easy integration with other systems. Our system is fexible, 
confgurable, platform-agnostic, open-sourced, and free. 

ACKNOWLEDGMENTS 
This project is supported by the National Research Foundation, 
Singapore under its Industry Alignment Fund – Pre-positioning 
(IAF-PP) Funding Initiative. Any opinions, fndings and conclu-
sions or recommendations expressed in this material are those of 
the author(s) and do not refect the views of National Research 
Foundation, Singapore. 

REFERENCES 
[1] Rabiyatou Diouf, Edouard Ngor Sarr, Ousmane Sall, Babiga Birregah, Mamadou 

Bousso, and Sény Ndiaye Mbaye. 2019. Web scraping: state-of-the-art and areas 
of application. In 2019 IEEE Big Data. IEEE, 6040–6042. 

[2] Carlos Jensen, Chandan Sarkar, Christian Jensen, and Colin Potts. 2007. Tracking 
website data-collection and privacy practices with the iWatch web crawler. In 
Proceedings of the 3rd symposium on Usable privacy and security. 29–40. 

[3] Moaiad Ahmad Khder. 2021. Web Scraping or Web Crawling: State of Art, Tech-
niques, Approaches and Application. IJASCA 13, 3 (2021). 

[4] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018. 
Improving language understanding by generative pre-training. (2018). 

[5] Andrea Stocco, Rahulkrishna Yandrapally, and Ali Mesbah. 2018. Visual web test 
repair. In Proceedings of the 2018 26th ACM ESEC/FSE. 503–514. 

195


	Abstract
	1 Introduction
	2 System Architecture
	2.1 Task Generation Subsystem
	2.2 Task Management Subsystem
	2.3 Task Execution Subsystem

	3 Demonstration
	3.1 Task Design & Creation
	3.2 Task view and execution
	3.3 Performance Evaluation

	4 Discussion
	5 Conclusion
	Acknowledgments
	References

